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Abstract— In this paper we propose a novel technique for
detecting loop closures on a trajectory by matching sequences
of images instead of single instances. We build upon well
established techniques for creating a bag of visual words
with a tree structure and we introduce a significant novelty
by extending these notions to describe the visual information
of entire regions using Visual-Word-Vectors. The fact that
the proposed approach does not rely on a single image to
recognize a site allows for a more robust place recognition,
and consequently loop closure detection, while reduces the
computational complexity for long trajectory cases. We present
evaluation results for multiple publicly available indoor and
outdoor datasets using Precision-Recall curves, which reveal
that our method outperforms other state of the art algorithms.

I. INTRODUCTION

The subject of visual Simultaneous Localization and Map-
ping (SLAM) refers to the task of a robot to localize itself in
the world while maintaining a representation of the environ-
ment by primarily employing visual sensing systems. Due
to its demanding nature and highly received attention, visual
SLAM provoked thought for many individual challenges. As
part of the graph-based SLAM, the loop closure detection
engine is responsible for finding revisited regions of the
executed trajectory and creating edge constraints between the
present and previously visited pose nodes [1], [2], [3]. Those
additional edges can later be used to refine the estimated
SLAM output and produce more accurate results [4], [5].

During the last decade, many novel methodologies were
presented in the literature aiming to address the loop clo-
sure task. These methods can be divided into three main
categories: image-to-image, map-to-map and image-to-map
matching, with the first one proven to scale better in long
trajectories [6]. A well known method adopting a technique
based on the first category –also known as appearance-based
place recognition– is the FAB-MAP [7], according to which,
a Bag of Visual Words (BVW) is created and used to measure
the similarity between the acquired images. On the other
hand, recently introduced methods have separated the loop
closure mechanism from the rest of the SLAM functionality.
More specifically, loops are detected by comparing the dis-
tances between Visual-Word-Vectors (VWVs), each of which
is associated with exactly one image. This approach was
initially inspired for solving image retrieval problems [8], yet
for the given application time proximity between sequential
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images is also exploited. Furthermore, maintaining a visual
vocabulary with a tree structure (vocabulary tree) [9], [10],
[11], is proven to be very efficient both in terms of memory
usage and execution time.

The novelty of the presented method (as illustrated by the
paper’s accompanying video material as well) lies upon the
partition of the matching procedure into two stages: initially
between long segments of the trajectory and later between
single frames, while still retaining a feature-based approach
using vocabulary trees. The main advantages the proposed
architecture introduces are the following:

• The multitude of loop closure candidates is reduced
since a normal sequence consists of multiple images.
This characteristic is of significant importance, espe-
cially in the case of very long trajectories.

• The ability to reject matches which are different in the
general view is provided regardless the fact that some
individual frames may be similar.

In this paper, we build upon BVW based techniques and
we extend the used VWVs from describing just one image
(I-VWV), to an image sequence descriptor (S-VWV). Al-
though, the concept of sequence matching has been already
introduced in the literature [12], [13], this is only based
on accumulating matching scores between I-VWVs. On the
contrary, our method reformulates the VWVs in order to
describe image sequences by combining all the visual words
found in every image-member into one single vector. In fact,
the summation of individual image similarity scores would
provide the same results with the proposed method only
under the false assumption that the used similarity metrics
f(x̄, ȳ) between two image VWVs (x̄ and ȳ) preserve the
additive property of linear mapping. Yet, in the real case it
may be just an approximation. Following the first level of S-
VWV matching, we proceed with individual image-to-image
(i2i) associations and provide the necessary for SLAM, fun-
damental matrix. Note that henceforth, the term “sequences”
will refer to “sequences of images” for shortening reasons.

The rest of the paper is organized with the following
structure: Section II briefly discusses the related work in
the area of appearance-based place recognition. In Section
III the proposed algorithm is described in detail, while
Section IV provides experimental results on four different
datasets (indoor and outdoor) and presents the system’s
parameter optimization. The computational advantage of
sequence-to-sequence (s2s) matching is analyzed in Section
V and finally, Section VI serves as an epilogue for this paper
where our final conclusions are drawn.



II. RELATED WORK

Creating a visual vocabulary to describe and match images
is a well established technique and it has been widely used in
the past decade to address many place recognition problems
[11], [12], [14], [15]. FAB-MAP [7] is a great example
that introduces the effectiveness of appearance-based loop
detection using visual words. Yet, the extraction of SURF
features [16] along with the fact that repetitive patterns
may reduce its performance, make it less appealing for long
trajectory scenarios [17]. The same issue arises in Schindler’s
et al. [11] method, where despite the usage of a tree hierarchy
for their vocabulary, SIFT feature [18] extraction remains a
disadvantage for the execution time.

One of the most representative and acknowledged tech-
niques is described by Gálvez-López and Tardós in [9] with
the DBoW2 [19] algorithm. In this work, a vocabulary tree
structure of binary words is proposed in order to create
I-VWVs and close loops by measuring additive normalized
distances between those vectors. Mur-Artal and Tardós used
this method in a later work [10] to recognize places, re-
localize and detect loops in a real-time implementation of
keyframe-based SLAM.

Recently, the notion of matching sequences of images, in-
stead of individual frames, has been reported in the literature.
Many techniques adopt a s2s matching scheme, especially to
recognize places between different lighting conditions (day
and night) or year seasons, such as [13], [20], [21], [22].
Despite the variance of approaches, the usage of local feature
descriptors is avoided due to their matching incapability
under such dramatical environmental and lighting changes.
In this paper though, we are interested in maximizing
the performance of the loop closure detection task under
environment conditions exhibiting insignificant variations.
Thus, a feature-based approach is more appropriate since
it typically copes better with rotation and scaling changes
induced by a freely moving camera. Probably the method
that can be characterized as the closest to ours is [12]. This
work, although intended for outdoors SLAM applications,
pointed out the importance of matching sequences of images.
The main difference between [12] and our method is that
their version uses cumulative similarity matrices derived
from the matching scores between individual images. On
the contrary, our method reformulates the approach and
utilizes sequence descriptors for the first level of loop closure
detection achieving robust results.

III. PROPOSED METHODOLOGY

In this paper, we detect loops using two levels of match-
ing. In the first level, correlations between sequences of
images are found, while in the second one their individ-
ual frames are matched. To achieve that, we introduce in
this paper for the first time a novel pipeline for place
recognition that firstly segments the image dataset into
groups based on their spatiotemporal proximity and then uses
Sequence-Visual-Word-Vectors as a means to find matches
between them. Subsequently, it exploits this prior knowledge
to find distinct associations of the images themselves.
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Fig. 1. The main pipeline of the proposed method. Feature descriptors from
groups of images traverse the vocabulary tree in order to produce sequence
(S-VWVs) and image (I-VWVs) descriptors.

A. Creating Visual-Word-Vectors for Images and Sequences

The first step of the proposed method includes the offline
creation of a visual vocabulary in order to quantize the image
feature space. A typical approach for creating a BVW with
a tree structure [8], [9], [11] was implemented using binary
descriptors since they provide low computational complexity.
A set of 3M BRIEF [23] descriptors were extracted from
10K indoor and outdoor images of the Bovisa 2008-09-01
[24] dataset forming a generic training sample D. Using this
sample on a k-median hierarchical clustering, with k-mean++
seeding [25] and Hamming distance, we were able to create
a tree of L = 6 levels and K = 10 branches per level with
the W = KL leaf nodes representing the final vocabulary.
Two different kinds of multisets need to be introduced here,
namely ND and ND

i : ND corresponding to the multiset of
total visual words found in D and ND

i to the multiset of the
i-th word occurrences in D.

In order to separate the acquired images into sequences we
chose to utilize information provided by the robot’s odom-
etry, which is running concurrently with the loop closure
detection pipeline, as mentioned before. As the robot moves,
a feedback from the odometry thread is provided and the
executed trajectory is separated into intervals of µ meters
with no overlap between them. Each interval contains a group
of acquired image-members and thus a new sequence S is
formed. The size of each group, referred to as k, varies
and depends on the robot’s speed during a sequence and
the selected value of µ. In those cases where the robot’s
odometry is not available, an approximation of the traversed
distance can be obtained assuming a relatively steady speed
and frame acquisition frequency. Although the first approach
is selected for this work, we found that both techniques end
up with equivalent sequence sizes and thus performances.

Figure 1 visually depicts the procedure of creating Visual-
Word-Vectors for a sequence S and its respective k image-
members, Im ∈ S (m ∈ [1, ..., k]). We make use of the
created vocabulary along with the “term frequency-inverse
document frequency” (tf-idf) [14] and formulate two differ-



Fig. 2. Sequence similarity matrix (a) before and (b) after filtering.

ent kinds of descriptors: the I-VWVs obtained from each
individual Im and the extended version of the proposed
sequence description vector, S-VWV, capable of character-
izing a physical place as a total. Using the FAST algorithm
[26], the most prominent 300 BRIEF feature descriptors
are extracted from every image in S. Those descriptors are
then quantized into visual words by traversing the created
tree and format the following multisets. The first pair of
multisets, N(Im)

i and N
(S)
i , refers to the i-th visual word

occurrences in image Im and sequence S, respectively. The
second one consists of N(Im) and N(S) which include the
total of visual words found in Im and S, respectively. The
following properties stand for the defined multisets:

N
(S)
i =

k⋃
m=1

N
(Im)
i (1)

N(S) =

k⋃
m=1

N(Im) (2)

The corresponding k I-VWVs description vectors, analyzed
as v̄(Im) = (v

(Im)
1 , v

(Im)
2 , ..., v

(Im)
i , ..., v

(Im)
W ) and a S-VWV

one, analyzed as v̄(S) = (v
(S)
1 , v

(S)
2 , ..., v

(S)
i , ..., v

(S)
W ), are

then formulated for every sequence using the tf-idf with:

v
(Im)
i =

N
(Im)
i

N (Im)
log

N (D)

N
(D)
i

(3)

v
(S)
i =

N
(S)
i

N (S)
log

N (D)

N
(D)
i

(4)

In the above equations, N (Im)
i equals the cardinality of

N
(Im)
i multiset, while N (Im) the cardinality of N(Im).

Equivalently, N (S)
i equals the cardinality of N(S)

i and N (S)

the cardinality of N(S). The terms N (D) and N
(D)
i are

common for both Eqs. 3 and 4 and correspond to the
cardinality of multisets N(D) and N

(D)
i , respectively. Note

that the extra computational burden for producing two kinds
of VWVs is negligible since the most time consuming part
of the procedure, i.e. the tree traversal, is executed only once
for each feature descriptor.

Next, we make use of inverse indexing and keep track
of the entries that share some common visual words. More
specifically, each leaf node, wi, is assigned with two lists:
one holding the containing image indexes and another the
sequence indexes. As new I-VWVs and S-VWVs are cre-
ated, the inverse indexing lists are updated and associate
images/sequences with common visual words.

B. Sequence to Sequence Matching

Starting with our first level of matching, each time a
new sequence is formed, a similarity measurement between
the most recent (query) and all the previously obtained
(database) S-VWVs needs to be evaluated. We adopt the
L1-score as a similarity metric to find loop closure candidates
between the query (Sq) and every sequence (Sd) in the
database set D that the sequence inverse indexing indicates:

L1

(
v̄(S)
q , v̄

(S)
d

)
= 1− 0.5

∣∣∣∣∣∣ v̄
(S)
q∣∣∣v̄(S)
q

∣∣∣ − v̄
(S)
d∣∣∣v̄(S)
d

∣∣∣
∣∣∣∣∣∣ (5)

This metric ranges in [0, 1], with similar sequences achieving
higher scores. It is essential to point out here the impor-
tance of the proposed S-VWV to S-VWV matching scheme
compared to the existed notion of summing similarity scores
between I-VWVs. Some existing techniques, e.g. [12], are
based on grouping the images into sets based on their time
proximity and accumulating the scores between their image-
members to detect loop closures. Although those approaches
offer legitimate results, they fail to offer a global similarity
measurement since the obtained visual words are distributed
over multiple description vectors. Thus, they are subjected
to a per camera perception of the scene and may produce
misleading conclusions. On the contrary, our method formu-
late a global description vector treating the whole sequence
as a single aggregation of observed visual words.

The produced by Eq. 5 sequence matching scores form
a similarity matrix, which is obtained incrementally during
the acquisition of new sequences, as the one presented in
Fig. 2(a). This matrix is symmetric since each one of its
(i, j) elements contains a corresponding L1

(
v̄
(S)
i , v̄

(S)
j

)
value. In addition to L1-score, matching scores that tend
to remain high between sequences that jointly escalate in
time receive a bonus. As an example, for a time window
of h = 3 sequences, if the similarities of Sq−1-to-Sd−1,
Sq-to-Sd and Sq+1-to-Sd+1 are high, we desire to advance
the score of Sq-to-Sd by some factor. On the contrary, the
score of a sequence that tends to present high similarity with
more than one members of D is considered ambiguous and
receives a penalty. Figure 3 contains examples for both cases.
Those two notions reflect a quantitative interpretation of
temporal consistency [27] and can be combined by applying
a 2-dimensional filter with the following kernel on the
similarity matrix’s entries:

H =

 α −β 0
−β 1 −β
0 −β α

 (6)
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Fig. 3. Penalty (left) and bonus (right) receiving pairs of sequences. This particular example illustrates some actual cases of sequences from the Bicocca25b
dataset together with their corresponding similarity sub-matrices.

TABLE I
PROPERTIES OF THE USED DATASETS

Dataset Name Description Avg. Speed
(m/s)

Measurements
Frequency (Hz)

Bicocca
2009-02-25b

Indoors
Frontal camera

Static
0.52 3.75

New College
Outdoors

Frontal camera
Dynamic

0.941 20

City Centre
Outdoors, Urban
Lateral camera

Dynamic
N/A N/A

Malaga 2009
Parking 6L

Outdoors
Frontal camera

Slightly dynamic
2.75 7.14

where α, β>0. This kernel refers to a time window of size
h = 3, but it can be expanded to support bigger filter sizes.
Analogous attempts for influencing the similarity matrix
can be found in [12], [13], yet in our case we attempt
to topologically interpret the manipulation, yielding a more
intelligible matrix as the one seen in Fig. 2(b). It is worth
noting here that, since inverse indexing is applied, only the
needed similarity sub-matrices are calculated and filtered
incrementally, allowing for an online formulation of the
whole matrix. Pairs of sequences (Sqi and Sdj

) above a
threshold a are considered to contain loop closing image
candidates; the next step of the proposed algorithm is their
subset i2i association.

C. Image to Image Matching

In order to find the best i2i matches we utilize the individ-
ual I-VWVs. Each frame I

(Sqi
)

i ∈ Sqi is compared only with
the ones in sequence Sdj

that the image inverse indexing list

indicates and it is associated to its best match I
(Sdj

)

j ∈ Sdj
.

A temporal consistency check is also applied here, which
retains a sequential increment of the matched image indexes.
This essentially means that since the first image, I

(Sqi
)

1 , finds

its best matching I
(Sdj

)
x , the next one, I

(Sqi
)

2 , can only be
matched with one of I

(Sdj
)

y

(
y ∈ [x, ..., kdj

]
)

and so forth.
Note that the inverted matching orientation (i.e. y < x) is
less likely, since the respective scenes typically seem very
different when observed from completely opposite directions,
and thus it is excluded [9], [12]. Frames I

(Sqi
)

i which do not
associate with any of the Sdj

members through the inverse
indexes, are ignored.

As a final step, our approach computes the fundamental
matrix between the related images in order to geometrically
verify the results. A RANSAC based scheme provides our
last resource for avoiding false positive loop closures. Image
matches are rejected if they fail to provide a fundamental
matrix or if the number of the feature point inliers is less
than a constant f . A reduction of the feature-to-feature
matching candidates can be achieved here by means of the
direct indexing [9], [19], which associate the descriptors’
corresponding visual words to the tree’s parent nodes. This
way, only the features that share the same parent, at a certain
level of the tree (l), are going to be checked.

IV. EXPERIMENTAL EVALUATION

In this section, we present the parameter tuning and opti-
mization of our system and finally compare our results with
other state of the art algorithms for loop closure detection.

A. Experimental Protocol

With a view to measuring the accuracy of our system, we
have chosen to use Precision-Recall curves. Precision is de-
fined as the ratio between the true and the total number of de-
tected loop closures. On the other hand, Recall is equal to the
ratio of the correctly detected loop closures, to the total num-
ber of loops the dataset contains. Four datasets were used to
evaluate the proposed method, namely Bicocca 2009-02-25b
[24], New College [28]1, Malaga 2009 Parking 6L [29] and
City Centre [7], with Table I containing a brief description

1This dataset was used with its improved visual odometry found at the
authors’ website.
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Fig. 4. Precision-Recall curves, for (a) Bicocca25b and (b) New College
datasets, measuring the effect of length (µ) on the system’s performance.

of them. The first two of these datasets were used to tune
and select the unknown variables (thresholds, coefficients,
etc) we introduced in previous sections, while the last two
were chosen to measure our system’s final performance.
Thus, the achieved efficiency is not directly influenced by the
algorithm’s calibration and a robust evaluation is provided.

B. Algorithm Calibration

To start with, we need to determine the number of meters
µ forming a sequence. We selected various testing cases for
µ and varied threshold a without using the similarity matrix
filtering, nor the geometrical verification, in order to produce
Precision-Recall curves. Figures 4 (a) and (b) present some
of the test cases that produced the most appealing results
for the Bicocca25b and New College datasets respectively.
Considering the first dataset, it appears that exceeding a
limit of meters results in a reduction of the performance.
This is owing to the fact that Bicocca25b is an indoor
dataset, therefore visual changes tend to be more severe.
A similar limit was found for the New College, but in this
case, the performance was reduced for sequence sizes higher
than 15 m. In a given real case scenario, the number of
meters composing a sequence can be adjusted accordingly
to enhance the performance of a particular environment, but
within the scope of this paper a general setting is considered
and the value µ = 5 m was selected.

The next set of variables that we need to determine is
the coefficients of kernel H . Following the same procedure,
we kept µ fixed to 5 m and we assessed a variety of α
and β combinations using Precision-Recall diagrams. It is
worth to point out here that H is a rank 3 matrix with
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Fig. 5. Precision-Recall curves, for (a) Bicocca25b and (b) New College
datasets, measuring the effect of Kernel H on the system’s performance.

the respective basis vectors forming a 3-dimensional space.
Thus, the filter’s effect is invariant to the basis vectors’
scaling and the only factor affecting our results is their
orientation. The most beneficial cases for both Bicocca25b
and New College datasets are presented in Fig. 5 (a) and (b),
respectively. Once again, the experiments were conducted
without using the geometrical verification. As seen, the pair
[α, β] = [0.5, 0.5] performs better and it is adopted as
kernel’s H coefficients. We also tried different filter sizes
h without any improvement in the performance.

For the rest of the algorithm we preserved the implemen-
tation parameters proposed by the authors of DBoW2. In
particular, we kept their selected setup for the geometrical
verification and direct indexing, since we confirmed their
superior performance for the i2i matching.

C. Overall Performance

Figure 6 illustrates the Precision-Recall curves for the two
testing datasets, Malaga6L and City Centre. We obtained
those curves by varying threshold a and considering i2i
matches. As it can be seen, our method maintains high
Recall percentage for 100% Precision due to the advantages
of adopting a VWV-based scheme on a sequence descriptor.
Even for the case of City Centre, one of the most demanding
dataset in literature, the proposed methodology retains 100%
Precision for Recall magnitudes as high as 68%.

Comparative results are presented in Table II with some
of the most well established techniques available in the liter-
ature for the same datasets, viz. [9], [10], [30]. The achieved
performance of the aforementioned algorithms was obtained
straightforwardly from their respective papers, while the



TABLE II
COMPARATIVE RESULTS

Dataset Approachs Precision (%) Recall (%)

Bicocca25b

DBoW2 [9]
Mur-Artal [10]

FAB-MAP 2 [30]
Proposed

100
100
100
100

81.20
76.60
N/A

78.10

New College

DBoW2 [9]
Mur-Artal [10]

FAB-MAP 2 [30]
Proposed

100
100
100
100

55.92
70.29
N/A

77.55

Malaga6L

DBoW2 [9]
Mur-Artal [10]

FAB-MAP 2 [30]
Proposed

100
100
100
100

74.75
81.51
68.52
76.78

City Centre

DBoW2 [9]
Mur-Artal [10]

FAB-MAP 2 [30]
Proposed

100
100
100
100

31.61
43.03
38.77
68.49
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Fig. 6. Precision-Recall curves, for Malaga6L and City Centre datasets,
illustrating the final system’s performance.

proposed system’s set of used variables is summarized in
Table III. As one can observe, our method achieves better
and more consistent results in most cases, due to the rich
descriptiveness that s2s matching offers. In the cases of Bic-
occa25b and Malaga6L datasets the achieved performance of
our approach is not proportional to the rest of the datasets’
due to some sharp turns in their trajectories. We observed
that in those cases, some loop closing images happen to fall
in the same sequence or the sequences themselves overlap
for small regions, thus failing to match with each other.
Those issues are originated from the fact that sequences are
arranged based on one fixed route distance (µ), rather than
substantial changes in the scene appearance. In such cases, a
dynamically chosen µ, based on common visual information,
can be applied, as to be discussed in the final section. Finally
in Fig. 7, the actual loops that our algorithm was able to
detect are presented for all the used datasets.

V. ALGORITHM COMPLEXITY

Along with the algorithm’s effectiveness, we also examine
its computational complexity. The experimental results in
[9], [10] reveal that the execution time of the loop closure
detection grows proportionally to the length of the executed
robot’s trajectory. This effect is due to the growth of the
database set of images that the query image is going to be

TABLE III
SELECTED PARAMETERS

Vocabulary Tree’s Branching Factor (K) 10
Vocabulary Tree’s Levels (L) 6

Number of Meters per Sequence (µ) 5
Filter’s kernel factors [α, β] [0.5, 0.5]

Sequence Matching Threshold (a) 0.32

Direct Indexing Level (l) 2
Min Feature Matches after RANSAC (f ) 12

compared with. In this section we prove that our first level
of s2s matching decreases the loop closure candidates, thus
ensures a reduction in the computational cost.

The matching procedure exhibits a quadratic complexity,
which is inevitable to dominate the execution time as the
course escalates, especially for cases of long trajectories.
Considering an example of a system without the first level of
s2s matching and a long trajectory with n acquired frames, a
total of n2/2 comparisons needs to be performed to associate
images with high similarity. In any case, inverse indexing
reduces the number of comparisons, but for simplicity we
will assume that there exists at least one visual word which is
common for every obtained image. In fact, inverse indexing
is applied in the first level of the proposed pipeline as well.
Thus, it causes the same effect on the multitude of sequences
comparisons and it is omitted from this section.

On the contrary, our method groups the images into sets
with an average size of k and initially uses their corre-
sponding sequence descriptors to recognize places containing
loop closing frames. Thereby, the number of comparisons is
reduced to approximately (n/k)2/2 on a first level and later,
only for the sequences that overcome threshold a, finds the
image associations that corresponds to loop closures. It is
worth noting that, using threshold µ = 5 on the four assessed
datasets and without considering the inverse indexing effect,
the average number of comparisons was reduced from about
102002/2 (i2i) to 2702/2 (s2s).

Finally, in order to evaluate the actual influence of the
aforementioned reduction of matching candidates, we formed
a timing experiment utilizing the biggest of our tested
datasets, New College. Using an Intel-i7@2.4GHz CPU and
4GB of memory, we were able to run our C++ based
algorithm on 25K images obtaining a total execution time
of 17.8ms per input frame on average, with 9.1ms being the
minimum and 43.2ms the maximum.

VI. CONCLUSIONS AND FUTURE WORK

In this work a novel pipeline for loop closure detection has
been proposed, where spatially arranged batches of images
are grouped together to form descriptors of places. Instead
of accumulating the matching scores from single frames
obtained close in time, local features from each of them are
combined to create a single VWV, as if they were originated
from one super-frame. Thus, the general view/content of
a scene can be used to detect revisited trajectory regions,
while the loop closing pairs of images are recovered only for



(a) Bicocca25b (b) New College 

(c) Malaga6L (d) City Centre 

Fig. 7. Loop detection results (highlighted with red) for each tested dataset.

them. Experimental results show that the proposed technique
achieves higher performance than other state of art methods
while reducing the execution time of the matching function
for long trajectories.

With a view to enhancing our proposal, a dynamic se-
quence length based on the variance of the visual information
needs be tested in the future. More specifically, the starting
and ending points of a sequence can be selected considering
a ratio between new and previously obtained visual words.
Thus, the image sequences would be distinguished according
only to their content, potentially improving the system’s
performance. Additionally, even though the main objective
of this paper is the introduction of the S-VWVs to the
existing literature, robust rotation and scale invariance of the
description needs to be further exploited by evaluating more
sophisticated types of binary features.
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[19] D. Gálvez-López and J. D. Tardós. (2012) DBoW2: Enhanced
hierarchical bag-of-word library for C++. [Online]. Available:
http://doriangalvez.com/software

[20] R. Arroyo, P. F. Alcantarilla, L. M. Bergasa, and E. Romera, “Towards
life-long visual localization using an efficient matching of binary
sequences from images,” in Proc. IEEE Int. Conf. Robotics and
Automation, 2015, pp. 6328–6335.

[21] E. Pepperell, P. I. Corke, and M. J. Milford, “All-environment visual
place recognition with SMART,” in Proc. IEEE Int. Conf. Robotics
and Automation, 2014, pp. 1612–1618.

[22] R. Arroyo, P. F. Alcantarilla, L. M. Bergasa, J. J. Yebes, and S. Bronte,
“Fast and effective visual place recognition using binary codes and
disparity information,” in Proc. IEEE Int. Conf. Intelligent Robots and
Syst., 2014, pp. 3089–3094.

[23] M. Calonder, V. Lepetit, C. Strecha, and P. Fua, “BRIEF: Binary
Robust Independent Elementary Features,” in Proc. European Conf.
Comput. Vision, 2010, pp. 778–792.

[24] RAWSEEDS. (2007-2009) Robotics Advancement through
Web-publishing of Sensorial and Elaborated Extensive
Data Sets (Project FP6-IST-045144). [Online]. Available:
http://www.rawseeds.org/rs/datasets

[25] D. Arthur and S. Vassilvitskii, “k-means++: The advantages of careful
seeding,” in Proc. ACM-SIAM symposium on Discrete algorithms,
2007, pp. 1027–1035.

[26] E. Rosten and T. Drummond, “Machine learning for high-speed corner
detection,” in Proc. European Conf. Comput. Vision, 2006, pp. 430–
443.

[27] A. Angeli, D. Filliat, S. Doncieux, and J.-A. Meyer, “Fast and
incremental method for loop-closure detection using bags of visual
words,” IEEE Trans. Robot., vol. 24, no. 5, pp. 1027–1037, 2008.

[28] M. Smith, I. Baldwin, W. Churchill, R. Paul, and P. Newman, “The
new college vision and laser data set,” Int. J. Robotics Research,
vol. 28, no. 5, pp. 595–599, 2009.

[29] J.-L. Blanco, F.-A. Moreno, and J. Gonzalez, “A collection of outdoor
robotic datasets with centimeter-accuracy ground truth,” Autonomous
Robots, vol. 27, no. 4, pp. 327–351, 2009.

[30] M. Cummins and P. Newman, “Appearance-only SLAM at large scale
with FAB-MAP 2.0,” Int. J. Robotics Research, vol. 30, no. 9, pp.
1100–1123, 2011.


